
 Implementation of Security in Multi-User Operating Systems
Gabe Emerson

Introduction.
Although most computer systems in use today are of the single-user, personal

computer type, there are still many areas where multi-user operating systems are needed
and used. The multi-user concept originated during the era of time-sharing mainframe
systems, when remote access terminals and more user-friendly interfaces allowed
multiple simultaneous connections to and interaction with the systems. During the 1960s
and 70s this was the usage model found most often in the computer field, a large central
server or mainframe accessed by many dumb terminal workstations, and allocating its
resources to each user according to time and precedence. During the 1980s and 90’s as
more personal computers and smart terminals began to be available to consumers and
businesses, the multi-user systems remained a viable model for many large companies,
universities, and government agencies. The more powerful descendents of such systems
are still in use today among many of these organizations, and in fact the trend among
personal computers has begun to belatedly follow that of mainframes. Instead of
providing a single user, single-interface terminal, PC operating systems are being tailored
to provide separate accounts for different users, more remote access to centralized
resources, and other features previously seen only in large business systems. The
importance of protecting information and resources on these machines is becoming more
important, especially with the spread of home networks and always-on internet
connections, which have historically been a popular gateway of attack against larger
systems and networks. The need for more public awareness of security needs and
methods is growing, and the way operating systems can provide such security and
awareness is still evolving. Because Linux/Unix and Microsoft Windows are the most
commonly used business and personal operating systems, I will focus on an analysis and
comparison of the security features available in each.

Account separation
One of the most important security features of a multi-user operating system is

account separation. The ability of each user to have their own private work and storage
space within the system is vital for the protection of file integrity and content privacy. It
also provides certain conveniences of customized settings and preferences in each
account, but these features are minor compared to the security benefits. By allowing each
user access to only the files he has created, along with any necessary public files,
common tools, and utilities, the system can ensure that users do not interfere with or
destroy the work of other users, either purposefully or accidentally. The separation of
accounts also assists in monitoring user activity or determining the cause of a problem,
since the system can record the actions taken by each users or during the time a particular
user is logged in.

Account separation was implemented first in mainframe OS’s such as IBM’s
OS/360 and AT&T’s early versions of UNIX. The first personal computer operating
system to offer separate user accounts was Linux, the open source OS based on UNIX
and including most of UNIX’s features. Early PC operating systems such as Apple OS,
CPM, Commodore OS, and various DOS clones were primarily designed as single-user

systems, with little or no networking features and no account separation (few had any
account authorization or login requirements at all). Later offerings by market kingpins
Microsoft and Apple continued to be single-user oriented, while Linux and Unix
remained the domain of hobbyists and developers. Recently both Microsoft and Apple
have begun implementing more and more multi-user features into their products, and
today the Windows XP and OS X Operating systems offer nearly as much functionality
as Linux in this area.

An important idea in multi-user systems is the concept of permissions. The
permission settings of a file or folder determine which users are allowed to view it, who
is allowed to change it, and who can create and delete files in certain areas. In Windows,
the “Administrator”, who has access to all content on the system, usually controls
permissions. Individual users can share or hide their files from each other, or allow
changes to be made to files by other users, but the Administrator can read and change
anything. In Unix this power is given to the “root” or superuser account, assumed to be
the owner or system administrator of the machine. Under Unix/Linux (and recent
versions of MacOS based on Unix), permissions are set with a 10-digit permission string
assigned to each file. This string consists of four parts, the first digit indicating any
special attributes (directory, executable file, etc), the 2nd, 3rd, and 4th digit indicate the
permissions given to the file’s owner or creator (owner information is stored elsewhere in
the file description). The 5th through the 7th character indicates group permissions, and the
8th through the 10th indicate permissions for every user on the system. Each block of
characters can have an r,w, and x, indicating the read, write, and execute permissions.

As noted before, the Administrator or Root accounts are the highest-level
accounts on Windows and Unix systems. There may be a need in some systems for
different levels of access among other users, for example a business could allow different
permissions and privileges to a manager than to a secretary, and a household might want
to allow older children more access to the computer than younger children. Both
Windows and Unix allow the system owner/administrator to assign various levels of
privileges to users, one method is to set up groups of users with similar privileges, so that
changes to the group permissions affect only those users in a particular group.

Authentication
Verifying that a user is in fact who they claim to be requires some method of

authentication. This is usually done by requiring the user to enter a login name
identifying themselves, and a password verifying that they are the owner of that account.

In Linux and Unix, user accounts are stored in an encrypted file located at
/etc/passwd. The passwords are encrypted with a randomly generated value resulting in
4,096 possible hashes for each password. However, since the passwd file is readable for
all users on the system (a requirement for authentication), it can be copied and compared
to values output by a password-cracking program, or “dictionary attack” (such a program
takes common words and encodes them with the same encryption algorithm to produce
possible password hashes). To protect against such an attack, many Linux distributions
implement a system called password shadowing, where the actual password hashes are
stored in a location accessible only to the root user, and the passwd file is set up to query
this file when it needs to compare an input password with an encrypted password.

Older versions of Microsoft Windows had a very simple username/password
authentication, both Windows 98 and 95 did not require any authentication for a default
user to log in. Windows 2000 and NT were the first Microsoft products designed
explicitly for multiple users, and employed a more secure authentication system. NT-
based operating systems (NT, 2000, and XP) store user passwords in a crypted form in
the registry, and also in a 56-bit “Data Encryption” hash which provides backwards
compatibility with older network authentication methods. Local and remote users can
access both of these encrypted files relatively easily, and the encrypted passwords can be
extracted and deciphered using a dictionary attack.

It is still possible to configure most operating systems to run in single-user mode
(the system assumes one user is always logged in). This can be convenient for a single
home PC user, but provides no protection against local tampering and can also disable
some of the network protection features.

Logging
Logging is the computer’s method of auditing user activity. In early timeshare

systems, user activity would be logged so that their use of the CPU and other shared
resources could be billed accordingly. Later, logging became useful for recording
suspicious or illegal activity on the system, and for troubleshooting problems and errors.
Depending on the level of logging set up by the system administrator, anything from the
time a user logged in, down to their individual keystrokes, can be recorded. Typical
logging simply records the times a user accessed the system, what files they created or
modified, what network connections they made, and when they disconnected. More
detailed logging can be enabled if necessary, Unix systems support very detailed logging
by default, and 3rd-party software is available to supplement this or provide backup
records in case there is suspicion of log tampering.

Windows systems usually include only minimal logging by default, including
generic network connection logging along with application and system errors. 3-rd party
logging packages can increase this functionality to include more detailed information
about connection attempts, program and user activity, and detailed application logging.
Depending on the degree of monitoring desired, this can include as much or more
information than a Linux system’s log files support.

Secure Remote connections
A useful aspect of multi-user systems is the ability to connect to the system

remotely. In modern usage this is most often done from “smart terminals”, or separate,
fully functioning computers rather than dumb communications-only terminals. Being able
to connect from another computer on the network rather than a dedicated terminal means
that the system is open to unauthorized access from other computers, and that
communications between terminals and the server can be intercepted or recorded. To
improve the security of such communication, many systems limit the types of
connections they allow. Typically the telnet protocol is available by default in many
Windows and pre-installed Linux systems, but since this connection method uses data
sent in plain text it can be intercepted and imitated by unauthorized users. A more secure
method is to use ssh, or the secure shell protocol, which encrypts communications traffic
between the server and the remote terminal. The operating system can be configured to

allow only secure connections, and as a further security measure, to block connection
attempts from outside a network of trusted machines. Secure Shell is more commonly
used with Unix based systems, and can also be used as a graphical remote interface.
Windows systems can also be used as ssh servers with 3-rd party software, or more
commonly as vnc (virtual network computing, third-party software), or windows remote
access servers, both of which are slightly less secure than ssh.

Common security holes
A backdoor is traditionally a preexisting security hole left by programmers for

testing purposes, but the term is also used to mean an access method left by an authorized
or unauthorized user. Usually it is a way to bypass the operating system’s front-end
security measures (such as opening an insecure TCP/IP port), hence the name. Backdoors
can be eliminated in the machine’s operating system by updating the system as soon as a
new backdoor is discovered, or by implementing a software firewall to prevent access to
any network ports not specifically known to or utilized by the user.

Network attacks usually take advantage of some published security hole or known
backdoor to gain access to a protected part of the system, with the eventual intent of
gaining administrative or root access. Often this is done by exploiting a buffer overflow,
or passing invalid data to a program and causing it to overflow its assigned memory
space and write the attacker’s code into another part of the system memory. This method
can be used to install and execute a rootkit or similar script, which gains superuser
priveledges and allows the attacker to gain control of the system.

Trojans are programs or scripts that authorized users are tricked into using, once
executed they do something malicious such as opening a backdoor, running a virus, or
collecting user information that an attacker can use to break security measures.
Persuading users to run Trojans usually involves some form of social engineering.

Social engineering involves persuading users to give up information about the
system, such as login names and passwords. Intruders can trick users into thinking they
have a genuine authorization or need for the information, or that they are a repair
technician or support worker who is fixing a problem with the user’s computer. Social
engineering is an often-overlooked area of weakness in security systems, since it is more
of a social than a technical aspect. The most effective way to prevent security
compromises through this method is to educate users about the dangers of social
engineering, and train them not to reveal important security information to unknown
persons. Protection against trojans, viruses, spyware, and other voluntary actions that
could result in a security compromise is also best brought about through user education.

Local attacks are another often-overlooked part of computer security. By gaining
physical access to a system, an attacker can often install malicious software, harvest user
accounts and passwords through software or hardware keyloggers, or acquire confidential
data from users’ accounts. Preventing physical access by intruders is not usually a
default feature of operating systems, although most can be configured to minimize this
risk. Windows XP does provide default protection of this type, by forcing local users to
log back in after a certain time has passed without activity on the system. Linux systems
can be configured to do the same through use of a screensaver password or screen lock
timeout, but most do not configure this by default. This is one of the few cases where a
new Windows XP installation can be more secure than a new generic Linux installation.

However, Windows XP and other version of Windows based on the NT kernel have
vulnerability in their registries by which the passwords can be reset or changed. A
Windows 200 or XP boot disk can be used to start up the system, log in as the
Administrator automatically, and change or reset any passwords. Similarly, several
“password reset utilities” based on Linux can be loaded from the floppy drive or CD
drive, and used to alter the registry keys containing the password hashes. Linux systems
can also be attacked in this way, if an intruder is able to reboot the system from their own
disk and access the hard drive, they can copy and possibly compromise the account
passwords. Using shadowed passwords can help prevent this type of attack on a Linux
system, but no such protection exists natively in Windows. The best defense is to set a
BIOS boot password and/or disable the floppy and CD drives and disable booting from
external drives.

A recent security compromise at UAF utilized local access to several public lab
computers to record passwords and gain control of the systems for illegal purposes.
Unfortunately the Department of Computing and Communications was not at liberty to
discuss the details of this incident, so the only information I have available is from
several anonymous sources. It appears that UAF’s security policies do not adequately
protect against this type of attack, and the only protection available is analysis of network
traffic and investigation of user complaints.

Updating security
To be an effective security tool, any operating system must be kept up to date.

Programmers (both benevolent and malicious) are constantly finding vulnerabilities in
operating system code, which must be patched to prevent malicious exploitation of the
vulnerability once it has become public knowledge. Both Windows and commercial
Linux distributions offer automatic updating over the internet, and many websites publish
the latest discovered vulnerabilities and information about how to repair or patch them.

Monitoring activities
Logging computer activity has been mentioned, but another method of tracking

system use and abuse is by monitoring and logging network activity as well as local
system activity. A dedicated computer on the network can act as a logging server, or can
hold backups of the logs produced by individual machines. Often this logging is done by
a hardware router or firewall device running a proprietary operating system, but it can
also be done by software in Linux and Windows environments.

Firewalling involves filtering out unwanted network traffic by blocking certain
TCP/IP ports. It attempts to eliminate or at least limit the number or backdoors and attack
vectors available to intruders from outside the firewalled network. Intruders on the local
network, inside the firewall boundary, can still be a problem. Large networks such as
UAF employ a two-tiered approach to network security. In UAF’s case, outside network
traffic is filtered through a firewall, and undesirable traffic (common attack ports, peer-
to-peer file sharing, and other questionable content) is blocked. They also employ a
system of heuristic analysis, where the network traffic inside the firewall is analyzed for
abnormal or suspicious patterns, and traffic can be tracked back to its source on the
network. Some of this analysis takes place at the Operating System level, and is primarily
implemented on a UNIX system. However a large part of the tracking and reporting is

done by dedicated hardware devices with proprietary operating systems designed
specifically for this task. In the case of network logging, Linux/Unix systems usually
have many more logging and network utilities installed than do Windows systems, but
both can be configured to serve as firewalls or logging systems.

While logging and reviewing logs for interesting patterns is usually a passive
monitoring activity, there is another method which takes a more active approach to
observing illicit activity over a network. A “honeypot” can be used to attract crackers and
observe their activities to learn more about typical attacks and how to find and deal with
security compromises. This is usually done by setting up a system with a very basic OS
installation, with known vulnerabilities and security holes, and then observing any attacks
carried out against it. On a large network such as UAF’s there are usually at least a few
people running port scanning and packet sniffing programs in an effort to find such
vulnerable machines and compromise them. The legality of using honeypots has been
questioned in a few cases, since legally it can be seen as a form of entrapment. If used
merely for observation and not for prosecution of attackers, then honeypotting should be
a perfectly legal way to learn about security holes in the chosen operating system.

Conclusion.
Securing a computer is a time consuming process no matter what operating

system is chosen. While the two most popular multi-user operating systems are quite
different in their implementation of security and the steps necessary to adequately protect
them, they can each be brought to an equivalent level of security through careful
observance of a few standard security policies and the addition or configuration of some
necessary software tools. In terms of native security, Unix based operating systems are
much more secure after a typical installation, but the level of knowledge and skill needed
to fully implement a trustworthy environment is higher than that needed for the more
user-friendly Windows-based operating systems. Windows may be easier to configure,
but the tools needed to bring it up to the same level of protection offered by Linux and
Unix are not typically included in a new installation and must be purchased or
downloaded from third-party vendors. This can take more time and effort than a Linux
system, and require more attention to detail to avoid the many security holes in a basic
Windows installation. Because of the relatively low security knowledge of typical
Windows users, keeping a system secure and up to date can be more difficult and require
more user education than would a work force of experienced Linux users. Each Operating
system has its benefits and drawbacks, so the choice of which to implement is largely
based upon the needs, desires, and resources of the particular user or company.

References:

Bace, Rebecca Gurley. Intrusion Detection. Indianapolis: Macmillan, 2000.

“History of Operating Systems.” Wikipedia. March 2004
http://en.wikipedia.org/wiki/History_of_operating_systems

Mandia, Kevin, and Chris Prosise. Incident Response: Investigating Computer Crime.
New York: McGraw Hill, 2001.

Medbury, Todd. Personal Interview. 26 Apr. 2004.

Nordahl, P. “Offline NT Password and Registry Editor”. 2004.
http://home.eunet.no/~pnordahl/ntpasswd/

Redding, Loren E, ed. Linux Complete. 2nd ed. Alameda: Sybex Inc, 2002.
Northcutt, Stephen, and Judy Novak. Network Intrusion Detection. 3rd ed. New
York: New Riders Publishing, 2003.

Tanenbaum, Andrew S. Modern Operating Systems. 2nd ed. New Jersey: Prentice-Hall,
2001.

“The Hack FAQ: Answers to Frequently Asked Questions About Hacking” 2600
Magazine. 2001. http://www.hackfaq.org/

