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Abstract.  We develop and evaluate several approaches to game-playing agents for the 
Connect-k family of  games.  Connect-k is  considered a  “fair”  variant  of  Go-Moku or 
Pente, and as such is more suited to game-theory investigations than its solved (provably 
biased) relatives. We compare a number of agents programmed to play connect-k,, based 
on several different strategies and computational methods. We identify an error in the 
threat algorithm used by Connect-k's designers, and demonstrate an improved algorithm 
to solve this problem.

1. Introduction

In this paper, we examine the efficiency of several playing agents designed for the 
game Connect-6 (explained in section 1.1). We compare our agents to each other and to 
the  program  designed  by  I-Chen  Wu  and  Dei-Yen  Huang,  who  first  published  the 
specifications for Connect-k games. 

Connect-6 is more interesting than related, but “solved” games such as Pente, and 
Connect 4. For each of these games, one player maintains an advantage by always having 
at least as many pieces on the board as their opponent. This imbalance, and it's solution, is 
discussed in more detail in the next section. By eliminating the unfair condition, Connect-
6 requires intelligent playing behavior rather than forced advantages in order to win, and 
thus provides a higher degree of challenge for playing agents. 

This paper is organized as follows.  Section 1.1 defines the game and provides 
terminology for discussing game state. Section 1.2 discusses generalized strategies for 
winning  Connect-6.  Section  2  covers  methods  for  counting  threats  on  game  boards. 
Section 3 lays out the different agents we developed, while section 4 discusses search 
methods. Section 5 demonstrates the results of competitive trials between our own agents 
and the agent program “NCTU6” developed by Wu and Huang [10].

1.1. Game Description.
Connect-k, or more properly, Connect(k,p,q) is a variant of Pente (Go-Moku),  and 

Connect-four.  Previous work regarding Connect-k can be found in [10], [11], and [8]. 
Connect-k consists of two players, White and Black, who alternate in placing stones on a 
board.  The first player to sequentially align a given number of stones in any row, column, 
or diagonal is the winner of the game.

The following is a list of definitions regarding Connect-k:

k - The number of pieces a player needs to place sequentially to win.
p - The number of pieces placed by each player during all but the first turn of the game.
q - The number of pieces placed by the first player in the first turn of the game. 



Threat - An arrangement of stones that will lead to a victory for a player in their next turn 
if not blocked.
Threat count - The number of stones that a player must place in order to neutralize all the 
threats that the opposite player has created.
Sequence – Any 2 or more adjacent stones of the same color in a line.

Connect-6 is played with k = 6, p = 2, and q = 1.  Playing in this manner attempts 
to ensure fairness.  If Connect-6 were to be played in a way where one piece was played 
on each turn (p = 1) the first player would have an advantage.  This is because the first 
player would always have one more, or as many, pieces on the board as the second player. 
With p = 1 and q = 1, each player will always have one more piece on the board after 
finishing his or her turn. Without additional rules and restrictions, experienced players or 
properly  designed  algorithmic  solutions can  always  win  when  playing  first  [8].   In 
general, for Connect-k Wu and Huang give an argument to show that a value of p = 2q 
ensures fairness [11]. 

1.2. Strategies.
Defensive strategies  mainly focus  on preventing an opponent  from creating k-

length sequences. This can be done by directly blocking individual rows, columns, and 
diagonals where multiple stones exist, or more proactively by looking ahead and blocking 
locations which could become part of multiple sequences in a single move.  A purely 
defensive strategy does not try to win, it only tries to prevent its opponent from winning. 
Offensive strategies include building up one's own sequences and “breakout” in which a 
player makes moves away from the main grouping of pieces. Taking the initiative is an 
important goal, as it can force the opponent to defend and give the player more freedom 
in  piece  placement  [9].  Creating  multiple  threats  is  also  important,  as  a  threat  count 
greater than p cannot be countered by the opponent's next turn, leading to a win [5]. A 
purely offensive strategy does not try to prevent its opponent from winning, it merely 
focuses on trying to create a win for itself.  Mixed strategies use a sensible combination of 
offense  and  defense  by attempting to  locate  and block  the  opponent's  sequences  and 
threats while building sequences and threats of its own. 

2. Identifying and Counting Threats.

2.1. Wu and Huang's strategy
The developers of Connect-k, I-Chen Wu and Dei-Yen Huang, propose a threat-

counting  strategy  in  their  whitepaper  [11].  This  strategy  is  based  on  the  idea  that 
“Threats” are sequences within one move of being length-k. Player W (white stones) is 
considered to have t threats if player B (black) must place t stones in order to prevent a 
win on W's next move. 

Wu and Huang's strategy is to create at least p+1 threats so that the opponent is 
unable to block all in their move, forcing a win. They use a sliding window on individual 
lines  (consisting of columns, rows, and diagonals) to check the existence of stones on a 
given line.  For the defensive player,  the object  is then to identify and block potential 
threats before they can grow in number, as well as blocking immediate potential wins by 
the opponent. 

The threat counting algorithm described by Wu is as follows:   (from page 7 of  “A 



New Family of k-in-a-row Games”) [10].

1. For a line, slide a window of size six from the left to right. 
2. Repeat the following step for each sliding window. 
3. If the sliding window contains neither white stones nor marked squares and at least four 
black stones, add one more threat and mark all the empty squares in the window. Note 
that in fact we only need to mark the rightmost empty square. The window satisfying the 
condition is called a threat window.

The following series of figures illustrate the operation of Wu's sliding window. We 
start by sliding the window of size six from left to right.

In the following window, all of the conditions of step 3 are met.  (At least four black 
stones,  no  white  stones,  no  marked  tiles.)  The  algorithm  then  increments  the  threat 
counter (currently one) and marks the rightmost available tile. 

As the scan continues, the next window sees four black stones and no white stones. Since 
there is a marked tile the conditions of step 3 do not hold, and therefore there is no new 
threat here.

Proceeding one window to the right finds that all three conditions are again true. The 
algorithm marks the rightmost empty tile and updates the counter to two.

.

There are now no further threats in this game board space. 

2.2 Error in Wu and Huang's Algorithm. 
The method shown above works correctly along a single line of tiles, but fails to 

properly identify all threats in some cases when used in two dimensions. Real-life and 
simulated  games  often  have  intersecting  threat  areas  on  multiple  lines  in  different 
dimensions. 

As an example of this error, consider the following situation with nearby stone 
sequences on multiple dimensions. We assume the agent using the algorithm is playing as 
White.  In  this  case,  Wu  and  Huang's  algorithm,  scanning  horizontally,  will  identify, 
increment, and mark the threat shown below.



          

When then scanning vertically, the algorithm finds a second threat and marks it as shown 
at left below. The algorithm considers this case to be two threats, but in reality there is 
only a single threat which White can neutralize by placing a stone as shown below at 
right.

          

It  is  easy to  see  that  if  the  horizontal  window identifying  the  first  threat  had 
marked  both tiles instead of simply the rightmost one, the vertical window would not 
have counted the threat a second time. This would have resulted in the correct calculation 
of one threat.  It is worth noting that allowing one window to mark multiple tiles does not 
mean that one window can see multiple threats.  One window can only see at most one 
threat.

2.3 Additional problems
The  improved  method  for  marking  multiple  tiles  is  not  perfect.   The  board 

arrangement shown at left below demonstrates a situation where this method fails. In this 
case, given we start with a horizontal scan, the first threat will be counted and two marks 
will be made as shown at right.



           

As a result of having marked both tiles at once, neither of the two vertical threats 
will be counted.  The threat counter will report one threat, but it will in fact take two 
stones to neutralize all the threats on this board.  

The underlying problem comes from the fact that when we are marking a tile, we 
are essentially saying, “I see a threat that I can neutralize by playing  here,” and then 
marking that spot on the board.  However, in some situations there are multiple locations 
where placing a stone could neutralize the threat.  The agent will not know which location 
makes the most sense to mark without doing a deeper analysis, so it simply plays on both. 
In other words, the threat counting algorithm assumes that we can play two stones at once 
to neutralize a threat, however obviously this is not the case.

At present, our Sequences AI (described in section 4) uses this slightly improved 
threat counting algorithm. It is assumed to be better than the original since there are few 
situations where it will fail, but a clever opponent could use the problem discussed here to 
exploit the Sequences agent. A better approach is described in section 3.2

3. Playing Agents for Connect-k

3.1. Framework
A Connect-k program has been written to serve as a framework for studying this 

problem. The program is a fully-featured Connect-k game, playable by two humans, by a 
human and a user selectable agent,  or by two agents. In addition to offering a game-
playing platform, an API has been created that guides the development of new AI agents, 
making it relatively easy to add new agents to the framework.

Our code is theoretically capable of handling any board size and any values of k, 
p,  and q,  although memory and processing limitations will  force some realistic upper 
limit. At present we are limiting our investigations to standard Go game boards of size 
19x19 with k = 6, p = 2, and q = 1. 

3.2 An algorithm to find threats correctly

We have developed an algorithm to find generalized threats. A generalized threat 
includes  not only immediate threats that require one move to win, but also sequences 
which require multiple turns to win. This algorithm will accurately show when a move 
will build multiple sequences as well:



➔ For every possible horizontal, vertical, and SE and SW diagonal of length at least 
k: 
 Keep a line cache the length of the line. The line stores two threat values for 

every tile. 
 For every tile within the line: 

 Check for threats in this fashion in the forward and backward direction: 

• Try to find the largest window on the line that includes the current tile 
as the starting tile and is of length at most k. This window must contain 
either empty pieces or pieces of one of the two players. 

• Now similarly find the largest window on the line that ends with the 
current tile. This time require that this window contain only pieces of 
one player (if the previous window contains a player's pieces, use that 
player).

• Return the largest number of pieces one player has within a window of 
k inside of the area we scanned. This is the threat value. 

 Set the cache line threat value for this tile to be the largest threat value of 
the two threat checks. 

 To prevent "threat shadows", that is the reuse of a larger sequence in 
counting an adjacent smaller sequence (for instance marking a 3-threat by 
counting all but one piece from a 4-threat window), we have larger threats 
"dominate" smaller threats. If there is a larger threat value within a k 
distance of the current tile, we do not set smaller threats on the line. 

 If both threat window checks' forward and backward windows' lengths 
sum to at least k, set the second threat value in the cache line to the smaller 
threat value. This means that if we play at this tile, we will create (or 
block) two valid sequences rather than one. 

 For both threat values, if they are non-zero, convert them to integers via 
this formula:
nt=2

c t−1

Add the resulting value for  both threats  t  to  the current  (initially zero) 
board values. The constant c must be large enough to prevent overflow (we 
use 6) of lower tier threats into higher tiers during the addition step and 
small  enough  such  that  the  integer  produced  for  the  largest  threat  fits 



within  the  integer  size limits  of  a  modern computer.  Do this  for  every 
threat in the cache line. 

Optionally after all the threat values are counted on the board, we may re-prioritize the 
threats. For instance, building sequences greater than k - p without enough moves left to 
win is not advantageous. In some cases it is more advantageous to build multiple smaller 
sequences than simply extend the largest sequence.

3.3. Agents
The crux of this work has been the development of intelligent agents capable of 

playing Connect-k.  Agent programs have been designed to interface easily with the game 
program, and can be set to compete against each other or against human players in any 
generalized k, p, q domain. The set of agents programmed to date include the following;

Adjacent 
Adjacent places a piece randomly in a tile that is adjacent to an existing piece. 

This is a proof-of-concept agent and was not intended to be a competitive program. It is 
useful for testing search techniques, especially for small board sizes where searching is 
effective enough to find a win quickly.

Windows
Windows uses a sliding-window scheme for identifying sequences (and threats), 

based on algorithms described in [2] and [11]. This AI tries to block multiple windows 
that give the opponent chances to make sequences. 

Threats 
Threats uses the threat detection algorithm directly as a utility function. It attempts 

to offensively create sequences of pieces that can lead to the creation of multiple threats. 
If the agent can create a threat count greater than p, it will force a win. 

Monte Carlo
Monte Carlo picks the next  move based on which one wins the most random 

games in a simulated setting. The reasoning behind this approach is that stronger moves 
will  win  more  random  games.  The  motivation  for  this  approach  comes  from  the 
successful use of this same approach in Go [3].

Sequences 
Sequences determines the utility of each possible move by calculating a board 

utility that would result if the move were played, and then chooses the move with the 
highest utility.  This agent uses the windowing method to traverse rows, columns, and 
diagonals on the board for each player (color) Each window seen by the agent is checked 
and given a score as follows (assuming it is White's turn):

● Windows containing any black stones are given a score of zero.
● A window containing any white stones r is given a score, equal to the number of  

stones squared. By squaring, we assign higher scores to lines or groups of stones 
than to scattered singletons. 



● If a window contains four or more white stones and no marked tiles, we note that 
White has a threat in the window and mark all empty tiles. Marks for each player 
are recorded separately.  

● The process is then repeated for Black, keeping threat windows for black and  
white separate. 

The data collected by this process is then used to compute the board utility. This is done 
as follows, assuming it is White's turn:

1. If White has an immediate win available (sufficient moves left in the turn to  
    make a k-length sequence), the current board is given the maximum utility. 
2. If any threats exist from the opponent, the board is given a low utility. The more 
    threats, the lower the utility. 
3. If white has P+1 threats, it is possible for white to win on the next turn. This   
    board is given a very high utility, but less than the utility of an immediate win. 
4. If none of these conditions are met, the next move is chosen based on the   
    following utility calculation: The agent takes the sum of White's window scores, 
    minus the sum of Black's scores times a defensive constant..

Thus, the total utility for the board is equal to:

Where CP is the current player and OP is the opponent player. 
 The defensive constant 'c' allows different weight to be applied to the opponent's 

pieces, in order to make the agent more offensive or more defensive. By changing c, we 
cause the current player to value its opponent's scores higher, so that it will prefer to block 
the opponent's sequences before creating its own. 

Scanning the entire board is computationally expensive, especially when playing 
in domains higher than the standard 19x19 board. We note, as does Muller in [7], that 
placing a stone on the board only affects a small subset of windows, so it is necessary 
only to  re-scan  those  windows  which  have  changed  after  every turn.  Data  regarding 
scores, marks, and threats from the unchanged board areas can be cached and reused.  

The local updates require us to scan all windows containing new pieces, as well as 
one window on each side of each new piece. The starting and ending windows for each 
new piece in a single direction are shown below. 

This means that in the horizontal, vertical, and both diagonal dimensions, we need to scan 
a total of 32 windows (8 for each direction).  Simply scanning windows containing new 
pieces would correctly count sequence lengths, but would possibly not correctly count 
threats. As an example of this, consider the following simplified board configuration. 

As the sliding window proceeds from left to right, the agent playing as White will see and 
mark the threat as follows:



The agent then places a new stone on the left side of the threat (on a marked tile):

When using the incremental method, agents remember which marks were created by the 
current window, so when rescanning an area, the current window checks if it has already 
placed marks there. If the agent finds any marks left by the current window, they are 
removed to reevaluate the threat conditions (So if a window sees, marks, and counters a 
threat, it will then un-mark other spaces it associated with the threat and re-check for 
other threats). Marks left by different windows are not removed, but treated normally. 

If the agent then re-scans only windows which contain the new stone, we 
encounter the following situation:

The agent has removed its previous marks, so when checking the last window containing 
the new stone, it sees the sequence of four black stones as having been blocked, and will 
not correctly identify the threat on the right. If we want the agent to identify this threat, 
we must slide the window one step beyond the new stone:

The problem with checking only those windows which contain new stones stems 
from the multiple ways in which a single threat can be marked. It is possible that the 
window which first sees a threat will encounter a situation where it no longer considers it 
a threat, but a different window will. 

By  itself,  the  utility  function  would  sometimes  value  multiple  k-1  length 
sequences more than single k-2 sequences, which is not always optimal. However, the 
algorithm works  well  when told  how to  handle  specific  cases  of  immediate-win  and 
imminent threats. 

Mesh
The Mesh agent attempts to create large clumps of stones.  The motivation for this 

strategy comes from the observation that creating clumps of stones allows freedom to 
create multiple threats.  The more adjacent stones belonging to one player,  the greater 
chance that player has of creating p+1 threats.  A contrived example of this would be a 
3x3 square of stones.  In such a situation a player would have 8 locations in which to 
create threats, after only playing 9 stones.  

To create clumps of stones, the agent treats the board as an elastic surface in which 
pieces are affected by gravity. Placing a piece (stone) will cause a depression in the board. 
The more stones in a region of the board, the “deeper” the depression in the surface.  The 
depth of each tile is calculated by adding the weight of the stone at that tile (if any) to the 
average weight of the four nearest stones in each of the eight radials surrounding the tile. 
These sets of equations are solved iteratively and the lowest tile that has not yet been 
played in is chosen. 



Opening Book
Opening  Book  is  not  a  full  agent,  in  the  sense  that  it  only  gives  move 

recommendations up to a fixed number of turns into a game.  More specifically, it can 
make move recommendations for common early game situations. These recommendations 
are based on analysis  of a large number of previous played games whose moves and 
results have been recorded in an external file, as in pattern-based learning [6].  To make 
its decision about which  kth turn move to recommend, it starts by finding all observed 
games which had the same game state after (k-1) turns, I.E. games whose board looked 
the same after (k-1) turns (Note that in this section, a move refers to placing p pieces on 
the board).  It then looks at the  kth turn moves in the observed games as well as the 
games' final outcomes, and chooses the best observed move to recommend (see later in 
this section for a discussion of the meaning of "best" in this situation).

The Opening Book agent learns by building what we call a statistics tree from the 
observed games.  A node at depth k in the tree contains the following information:

• an encoding of the board state (after k turns),
• statistics on the eventual outcomes of observed games which had this board state, 

recorded as win, tie, and loss counts for player 1,
• links to children nodes (at depth k+1) with each link labeled by the observed move 

which causes the board state change.
The root of the tree is the node representing an empty board, and since every game 

starts with an empty board, the outcome statistics will be the win/tie/loss counts over all 
observed games.  A specific observed game is thus represented as a walk down the tree 
from the root, following the links corresponding to the moves that occurred in that game. 
It is important to point out that this statistics tree is not exactly a tree in the traditional 
sense because there may be multiple paths  from the root to a specific  node.  This is 
because the order in which moves occur doesn't affect the board state--that is if player 2 
makes move A, player 1 responds with move B, and then player 2 makes move C, the 
board state is the same as if the moves occurred as C, B, A.

The statistics tree is built from a set of observed games by enumerating over each 
game.  A game is added to the tree by walking down the tree from the root, adding links 
for each observed move.  These links either connect to existing nodes if the resulting 
board state is already in the tree, or newly created nodes if the resulting state isn't in the 
tree (the search for existing states only occurs at a specific depth in the tree since it takes 
an exact number of turns to get to a given board state).  As the walk down the tree occurs, 
the relevant win/tie/loss count for each node is incremented depending on the outcome of 
the observed game.  Once a statistics tree has been built for a specific set of observed 
games, the tree structure can be saved to a file so that the tree can be loaded later without 
having to enumerate over all the games again.

The state of a board can be encoded in a few different ways.  One example is 
encoding  a  board  as  a  large  positive  integer.   Consider  a  board  with  m rows  and  n 
columns.  We can index the board tiles so that the tile at row r and column c has index:

For example the tile at row 1 column 1 (top left) has index 0, the tile at row 2 column 1 
has index n, and the tile at row m column n (bottom right) has index (mn-1).  We can then 
encode the state of a board as:

)1()1(),( −+−= cnrcrindex



where vi is 0,1, or 2 depending on whether the ith tile is empty, has a black piece, or has a 
white piece respectively.  With a reasonable sized board these state encodings exceed the 
capacity  of  most  programming  language's  fixed-size  integers,  so  arbitrary  precision 
integer libraries must be used (e.g. Gnu MP for C or C++ or BigInteger for Java).

Another way to represent a board state is to encode it using a pair of sorted lists. 
One list holds the sorted tile indices of the black pieces and the other list holds the sorted 
tile indices of the white pieces.  These tile indices can be defined as previously, but unlike 
the integer encoding method it isn't necessary for the indices to be non-negative.  In fact it 
is possible to use this fact to take advantage of some of the symmetry of the game.  When 
the game parameter q=1 (I.E. player 1 plays one piece on the first turn) then it doesn't 
really matter where player 1 plays their first piece (for this reason most players just play 
their first piece right in the middle).  Letting r0 and c0 be the row and column of player 1's 
first piece, we can define our indices relative to this position using the definition:

Since this is a useful symmetry to take advantage of and it is an easy modification 
to implement (it is merely subtracting a constant from the previous definition) we chose 
this method to encode our board state.

Once the statistics tree is  created (or loaded) it  can be used to generate move 
recommendations.  The recommendation for a given board situation is determined by first 
searching the correct depth of the tree for the node with the corresponding board state 
encoding (the depth is determined by the turn, which is determined by the number of 
pieces on the board).  If no node has the same board state, no recommendation can be 
given.  Once the corresponding node is found, the win/tie/loss statistics for the children of 
that node are used to determine the recommended move.  A desirable move is one that has 
a high win to loss ratio, but also has a high enough number of games which contained the 
move so that the ratio is a meaningful measure (e.g. a move which was observed to cause 
1 win and 0 ties or losses has a win to loss ratio of 1.0, but may have just been a fluke). 
With the need to balance both of these characteristics (good ratio and enough observed 
games), we were not able to come up with a completely satisfactory ordering relation on 
the moves.  As an example, it is hard to tell if a move with a w/l ratio of 70% in 10 
observed games or one with a w/l ratio of 100% with only 2 observed games is the 'better' 
choice.

Unable to come up with a 'best' ordering, we settled on the following method.  We 
define s to be the threshold of significance for number of games observed (we use s=4). 
Consider all moves which have been observed at least s times, and pick the move which 
has the highest win to loss ratio among these.  If the ratio is better than 50%, recommend 
this move.  Otherwise, look at the moves which have been observed less than s times, and 
recommend the move with the most number of wins, with ties going to the move observed 
the least number of times (e.g. 2 wins out of 2 games is better that 2 wins out of 3 games, 
but 2 wins out of 3 games is better than 1 win out of 1 game). 

The Opening Book agent  is  limited in several  ways.   It  is  restricted to giving 
recommendations for only a fixed number of turns.  The first reason for this is that after 
enough turns,  the  size  of  the  statistics  tree  becomes prohibitively large.   The second 
reason is that as the number of turns increase, the number of observed games matching 
the situation is likely to decrease, resulting in less sound recommendations.  This second 
reason also limits the Opening Book agent in the sense that if none of the observed games 
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match the current  situation,  it  cannot  make recommendations.   For  these reasons,  the 
Opening Book agent is more useful as an early-game aid to a human player, or when 
combined with another agent that can analyze later game moves.

4. Search Methods
In addition to the agents listed above, a Minimax search with alpha-beta pruning 

has been implemented, and can be used by any agent. To take advantage of the search 
interface, the agent must provide a list of moves with a utility assigned to each move. To 
reduce the branching factor of the search,  only the moves with the highest utility are 
explored further at each level of the search. The number of top moves considered is a 
variable that can be set at run time. A Minimax search allows each agent to be able to look 
ahead in the game and choose the best moved based on where it approximates the game 
will be in the future [5].

Allowing  multiple  moves  per  turn  presents  a  unique  problem  to  the  search 
algorithm. For simplicity and generality across different values of p, a utility function will 
process one board at a time and return a list of moves. However, it does not return sets of 
moves. The search algorithm, despite searching one level at a time, must keep track of 
what move combinations it has already searched. We can solve this problem by marking a 
tile on the board (on the search stack) as searched, and avoiding tiles that have been 
marked this way in succeeding function calls. Note that the searched markers must be 
cleared when a player's turn ends.

5. Agent Performance
By running a game with two agent players, the relative performance ability of each 

agent can be compared. We have compared each of our agents to our other agents, to our 
own (inexperienced human) play, and to the Connect-6 program “NCTU6” developed by 
Wu and Chang [10]. NCTU6 was the champion program of the 2006 ICGA Connect-6 
tournament  and  is  considered  to  be  the  premier  Connect-6  program,  it  provides  an 
excellent baseline for the efficiency and performance of our advanced agents.

NCTU6  does  however  have  a  few  noticeable  limitations.  It  is  deterministic, 
meaning that  once an exploitable  game is  found, it  can always be reproduced.  There 
appears to be a bug in the program related to incorrect use of multiple threats. We suspect 
the program also suffers from the error in the sliding window algorithm described in 
section 3.2.

At present, the publicly available version of NCTU6 is limited to depth-3 search, 
which means that a competitive agent would need to perform better at the same search 
depth. However, we believe NCTU6 also uses a pattern-matching database, so we feel 
that one of our agents using only search but with a deeper depth should still be considered 
a fair opponent to the NCTU6 program.

Without  search,  both  Threats  and  Sequences  are  formidable  opponents  to 
inexperienced human players. Humans have trouble keeping track of the many sequences 
within a complex board, giving computer opponents an edge in longer games.

Using our program's tournament mode, we tested our most advanced AIs against 
each other. The Sequences utility function won 77% of its games against Threats. Monte 
Carlo  performed  a  bit  better  against  Sequences,  which  won 70% of  the  time.  When 
Threats is enabled with search to depth 4, it will beat Sequences 52% of the time. Because 
sequences is a slower utility function than Threats, it was prohibitive to thoroughly test it 
using a deep search, however, limited testing did show improvement.



We could not  perform automated tests  with  NCTU6,  but  we were  to play the 
program against ours by manually placing pieces. Threats was unable to defeat NCTU6, 
however Sequences was able to win about 10% of the time.

6. Future Work
There are a number of additional approaches which could be applied towards the 

Connect-k  domain.  Genetic  search  algorithms  show  a  great  deal  of  potential  for 
developing  efficient  strategies  via  evolution.  A simple  way to  apply genetic  learning 
would be for more accurate results in the Monte Carlo agent, but this would involve an 
even heavier processing burden. Monte Carlo could also be improved by caching the 
results of random games to improve per-move computation requirements.

The  mesh  algorithm  shows  potential,  but  is  very  easy  to  beat  in  its  present 
incarnation.  Adding basic  defensive and offensive behavior  could improve the agent's 
play.  Strategic  positioning  in  addition  to  clumping  would  allow  a  wider  range  of 
responses  to  board  conditions  and  should  make  the  agent  "smarter"  about  creating 
multiple threats. 

The Threats utility function has potential to be improved by prioritizing moves. A 
clever playing agent could assign different weights to threat values based on the current 
game scenario. For example, building sequences longer than k-p without enough moves 
left to win is not always preferred, as such a sequence will likely be blocked. It may be 
better to create multiple small sequences than to extend the longest sequence. 

We intend to release our code as an open-source project, including the Connect-k 
game framework and collected agent programs. Eventually we hope to produce an agent 
which  is  advanced enough to  be competitive  in  the  international  gaming community. 
Other  types  of  algorithms which  could  be  applied  to  this  area  include reinforcement 
learning and statistical learning, as well as neural network agents. It remains to be seen 
which branch of artificial intelligence is most suited to this specific domain.

7. Conclusions
We  found  that  our  "Threats"  and  "Sequences"  agents  were  the  two  strongest 

approaches.  Relative performance of these two agents was based on the search depth 
available  to  the  Threats  algorithm.  Monte  Carlo  is  also  a  relatively  strong  approach, 
although  slow  in  performance.  The  Sequences  algorithm is  our  best  candidate  for  a 
competitive playing agent, as it is occasionally able to beat the current world champion 
program. By utilizing our corrected threat detection technique, we have developed a more 
accurate and extensible framework for connect-k agents than previously existed. 
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